The RKFIT Algorithm for Nonlinear Rational Approximation
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولCyclic AFD Algorithm for Best Rational Approximation
We propose a practical algorithm of best rational approximation of a given order to a function in the Hardy H space on the unit circle or on the real line. The type approximation is proved to be equivalent with Blaschke form approximation. The algorithm is called Cyclic AFD as it adaptively selects one parameter during each cycle based on the Maximal Selection Principle used in adaptive Fourier...
متن کاملRational Approximation of Nonlinear Optimal Control Problems
In this paper rational approximation of solutions to nonlinear optimal control problems is considered. A computational procedure is presented that makes it possible to compute a rational function that approximates the true optimal cost function. It is shown that the rational function has the same series expansion around the origin as the true solution. Finally, two examples are given that compa...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2017
ISSN: 1064-8275,1095-7197
DOI: 10.1137/15m1025426